On magnetostrictive materials and their use in adaptive structures
نویسنده
چکیده
Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and highauthority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.
منابع مشابه
Dynamic Actuation and Quadratic Magnetoelastic Coupling of Thin Magnetostrictive Shells
Smart adaptive structures and structronic systems have been increasingly investigated and developed in the last two decades. Although smart structures made of piezoelectrics, shape-memory materials, electrostrictive materials, and electro-/magnetorheological fluids have been evaluated extensively, studies of magnetostrictive continua, especially generic mathematical model(s), are still relative...
متن کاملSemi-Active Pulse-Switching SSDC Vibration Suppression using Magnetostrictive Materials
One of the best vibration control methods using smart actuators are semi-active approaches which are as strong as active methods and need no external energy supply such as passive ones. Compared with piezoelectric-based, magnetostrictive-based control methods have higher coupling efficiency, higher Curie temperature, higher flexibility to be integrated with curved structures and no depolarizati...
متن کاملSmart Vibration Control of Magnetostrictive Nano-Plate Using Nonlocal Continuum Theory
In this research, a control feedback system is used to study the free vibration response of rectangular plate made of magnetostrictive material (MsM) for the first time. A new trigonometric higher order shear deformation plate theory are utilized and the results of them are compared with two theories in order to clarify their accuracy and errors. Pasternak foundation is selected to modelling of...
متن کاملDesign, Modeling and Experiments of An In-pipe Magnetostrictive Impact Drive Mechanism
This paper presents a magnetostrictive in-pipe impact drive mechanism (IDM). To estimate the output performances of the IDM, a dynamics model was developed based on the magnetostrictive material constitutive model and mechanical model of the IDM. Therefore, an experimental system has been built to test the motion performance of IDM. Simulation and experimental results illustrate that the propos...
متن کاملAn Energy Based Adaptive Pushover Analysis for Nonlinear Static Procedures
Nonlinear static procedure (NSP) is a common technique to predict seismic demands on various building structures by subjecting a monotonically increasing horizontal loading (pushover) to the structure. Therefore, the pushover analysis is an important part of each NSP. Accordingly, the current paper aims at investigating the efficiencyof various algorithms of lateral load patterns applied to the...
متن کامل